切换至 "中华医学电子期刊资源库"

中华胃肠内镜电子杂志 ›› 2018, Vol. 05 ›› Issue (04) : 167 -173. doi: 10.3877/cma.j.issn.2095-7157.2018.04.006

所属专题: 文献

综述

寡肽吸收的研究进展
王宁1, 令狐恩强1,()   
  1. 1. 100853 北京,解放军总医院消化科
  • 收稿日期:2018-08-31 出版日期:2018-11-15
  • 通信作者: 令狐恩强
  • 基金资助:
    北京市科委课题(D141100000414003)

Advances in oligopeptides absorption

Ning Wang1, Enqiang Linghu1,()   

  1. 1. Department of Gastroenterology, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2018-08-31 Published:2018-11-15
  • Corresponding author: Enqiang Linghu
  • About author:
    Corresponding author: Linghu Enqiang, Email:
引用本文:

王宁, 令狐恩强. 寡肽吸收的研究进展[J]. 中华胃肠内镜电子杂志, 2018, 05(04): 167-173.

Ning Wang, Enqiang Linghu. Advances in oligopeptides absorption[J]. Chinese Journal of Gastrointestinal Endoscopy(Electronic Edition), 2018, 05(04): 167-173.

蛋白质在动物消化道内经过各种消化酶的作用,被降解成游离氨基酸和寡肽。自20世纪60年代起大量研究表明,除了游离氨基酸以外,寡肽尤其是小肽也能够被动物直接吸收利用。寡肽可通过细胞旁途径、被动扩散、内吞作用或载体转运后被小肠上皮细胞吸收。其生物活性在口服药物吸收中也有广泛的应用前景。影响寡肽吸收转运的因素主要有:采食水平、蛋白质品质、肽链长度、氨基酸残基构型、载体及动物健康状态等。

Proteins can be digested into free amino acids and oligopeptides by various enzymes in the gastrointestinal tract. It has been recognized that oligopeptides, especially small peptides, can be directly absorbed and utilized by animals since the 1960s. The oligopeptides can be absorbed by small intestinal epithelial cells through paracellular pathway, passive diffusion, endocytosis or carrier transport. Its biological activity also has a wide application prospect in oral drug delivery. The main influencing factors are feeding level, protein quality, length of peptide chain, configuration of amino acid residues, carrier and animal health status, etc..

图1 蛋白质在哺乳动物小肠上皮细胞的消化吸收过程[14]
图2 寡肽通过小肠上皮细胞的路径[1]
[44]
Amoss M, Rivier J, Guillemin R. Release of gonadotropins by oral administration of synthetic LRF or a tripeptide fragment of LRF[J]. J Clin Endocrinol Metab, 1972, 35(1):175-177.
[45]
Ptachcinski RJ, Burckart GJ, Venkataramanan R. Cyclosporine[J]. Drug Intell Clin Pharm, 1985, 19(2):90-100.
[46]
Walker WA, Cornell R, Davenport LM, et al.MACROMOLECULAR ABSORPTION:Mechanism of Horseradish Peroxidase Uptake and Transport in Adult and Neonatal Rat Intestine[J]. J Cell Biol, 1972, 54(2):195-205.
[47]
Miguel M, Alvarez Y, López-Fandi?o R, et al.Vasodilator effects of peptides derived from egg white proteins[J]. Regul Peptides, 2007, 140(3):131-135.
[48]
Rabanel JM, Aoun V, Elkin I, et al.Drug-loaded nanocarriers: passive targeting and crossing of biological barriers[J]. Curr Med Chem, 2012, 19(19):3070-3102.
[49]
Kamei N, Nielsen EJ, Els K, et al. Noninvasive insulin delivery:the great potential of cell-penetrating peptides[J]. Therapeutic Delivery, 2013, 4(3):315-326.
[50]
Kamei N , Kikuchi S , Takeda-Morishita M , et al. Determination of the optimal cell-penetrating peptide sequence for intestinal insulin delivery based on molecular orbital analysis with self-organizing maps[J]. J Pharm Sci, 2013, 102(2):469-479.
[51]
Els K , Kamei N , Nielsen E J , et al. One-month subchronic toxicity study of cell-penetrating peptides for insulin nasal delivery in rats.[J]. Eur J Pharm Biopharm, 2013, 85(3):736-743.
[52]
Swaminathan J, Ehrhardt C. Liposomal delivery of proteins and peptides[J]. Expert Opin Drug Deliv, 2012, 9(12):1489-1503.
[53]
Zhang Y, Wei W, Lv P, et al.Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin[J]. Eur Pharm Biopharm, 2011, 77(1):11-19.
[54]
Vachon C, Gauthier S, Charbonneau R, et al. Relationship between in vitro digestion of proteins and in vivo assessment of their nutritional quality[J]. Reproduction Nutrition Developpement, 1987, 27(3):659-672.
[55]
Ma K, Hu Y, Smith DE.Influence of Fed-Fasted State on Intestinal PEPT1 Expression and In Vivo Pharmacokinetics of Glycylsarcosine in Wild-Type and Pept1 Knockout Mice[J]. Pharm Res, 2012, 29(2):535-545.
[56]
Grimble GK, Rees RG, Keohane PP, et al.Effect of peptide chain length on absorption of egg protein hydrolysates in the normal human jejunum[J]. Gastroenterology, 1987, 92(1):136-142.
[57]
Burston D, Matthews DM.Intestinal transport of dipeptides containing acidic and basic L-amino acids and a neutral D-amino acid[J]. Clin Sci, 1972, 42(1):4.
[58]
Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition[J]. Xenobiotica, 2008, 38(7-8):1022-1042.
[59]
Daniel H, Morse EL, Adibi SA.Determinants of substrate affinity for the oligopeptide/H symporter in the renal brush border membrane[J]. J Biol Chem, 1992, 267(14):9565-9573.
[60]
Gebbers JO, Laissue JA.Immunologic structures and functions of the gut[J]. Schweizer Archiv Für Tierheilkunde, 1989, 131(5):221-238.
[61]
Wilkinson PC.Surface and cell membrane activities of leukocyte chemotactic factors[J]. Nature, 1974, 251(5470):58-60.
[62]
Lennernäs H. Intestinal permeability and its relevance for absorption and elimination[J]. Xenobiotica, 2007, 37(10-11):1015-1051.
[63]
Madara JL.Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium:Physiological rearrangement of tight junctions[J]. J Membr Biol, 1990, 116(2):177-184.
[64]
Meredith D, Boyd CA.Structure and function of eukaryotic peptide transporters[J]. Cell Mol Life Sci, 2000, 57(5):754-778.
[1]
Miner-Williams WM, Stevens BR, Moughan PJ.Are intact peptides absorbed from the healthy gut in the adult human?[J]. Nutr Res Rev, 2015, 27(2):308-329.
[2]
Matthews DM.Intestinal absorption of peptides[J]. Physiol Rev, 1975, 55(4):537-608.
[3]
Adibi SA, Phillips E. Evidence for greater absorption of amino acids from peptide than from free form in human intestine[J]. Clin Res, 1968, 16.
[4]
Cohnheim O. Versuche über Resorption, Verdauung und Stoffwechsel von Echinodermen[J]. Hoppe Seylers Z Physiol Chem, 1901, 33(1-2):9-54.
[5]
Agar WT, Hird FJ, Sidhu GS.The active absorption of amino-acids by the intestine[J]. J Physiol, 1953, 121(2):255-263.
[6]
Newey H, Smyth DH.Cellular mechanisms in intestinal transfer of amino acids[J]. J Physiol, 1962, 164(3):527.
[7]
Gardner ML.Absorption of intact peptides:studies on transport of protein digests and dipeptides across rat small intestine in vitro[J]. Q J Exp Physiol, 1982, 67(4):629-637.
[8]
Ganapathy V, Leibach FH.Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline[J]. J Biol Chem, 1983, 258(23):14189-14192.
[9]
Fei YJ, Kanai Y, Nussberger S, et al.Expression cloning of a mammalian proton-coupled oligopeptide transporter[J]. Nature, 1994, 368(6471):563-566.
[10]
Adibi SA, Kim Y S. Peptide absorption and hydrolysis[J]. Physiol Gastrointestinal Tract, 1981, 2:1073-1095.
[11]
Grimble GK, Dba S. Peptides in human nutrition[J]. Nutr Res Rev, 1989, 2(1):87-108.
[12]
Foltz M, Pc VDP, Duchateau GS.Current in vitro testing of bioactive peptides is not valuable[J]. J Nutr, 2010, 140(1):117-118.
[13]
Daniel H. Molecular and Integrative Physiology of Intestinal Peptide Transport[J]. Annu Rev Physiol, 2004, 66(1):361-384.
[14]
Brandsch M, Brandsch C, Souffrant WB,et al.Intestinal transport of amino acids,peptides and proteins[C].Progress in research on energy and protein metabolism. International Symposium,Rostock-Warnemünde,Germany,13-18 September,2003,2003:463-470.
[15]
Haque E, Chand R, Kapila S. Biofunctional properties of bioactive peptides of milk origin[J]. Food Rev Int, 2008, 25(1):28-43.
[16]
Silva SV, Malcata FX.Caseins as source of bioactive peptides[J]. Int Dairy J, 2005, 15(1):1-15.
[17]
Meisel H. Biochemical properties of bioactive peptides derived from milk proteins: Potential nutraceuticals for food and pharmaceutical applications[J]. Livest Prod Sci, 1997, 50(1-2):125-138.
[18]
Leterme P, Van Leeuwen P, Thewis A,et al.Proceeding of the 6th International Symposium on Digestive Physiology in Pigs[C].EAAP Publication no.80,Bad Doberan.Germany,1994:21-24.
[19]
Vincenzini MT, Iantomasi T, Favilli F. Glutathione transport across intestinal brush-border membranes: effects of ions, pH, delta psi, and inhibitors [J]. BBA- Biomembranes, 1989, 987(1):29-37.
[20]
Takuwa N, Shimada T, Matsumoto H, et al.Proton-coupled transport of glycylglycine in rabbit renal brush-border membrane vesicles[J]. Biochim Biophys Acta, 1985, 814(1):186-190.
[21]
Ménard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens[J]. Mucosal Immunol, 2010, 3(3):247-259.
[22]
Vermeirssen V, Van CJ, Verstraete W. Bioavailability of angiotensin I converting enzyme inhibitory peptides[J]. Br J Nutr, 2004, 92(3):357-366.
[23]
Engle MJ, Goetz GS, Alpers DH.Caco-2 cells express a combination of colonocyte and enterocyte phenotypes[J]. J Cell Physiol, 1998, 174(3):362-369.
[24]
Shen W, Matsui T. Current knowledge of intestinal absorption of bioactive peptides[J]. Food Funct, 2017, 8(12):4306-4314.
[25]
Hong SM, Tanaka M, Koyanagi R, et al.Structural Design of Oligopeptides for Intestinal Transport Model[J]. J Agric Food Chem, 2016, 64(10):2072-2079.
[26]
Hu Y, Chen X, Smith DE.Species-dependent uptake of glycylsarcosine but not oseltamivir in Pichia pastoris expressing the rat, mouse, and human intestinal peptide transporter PEPT1[J]. Drug Metab Dispos, 2012, 40(7):1328-1335.
[27]
Xu F, Wang L, Ju X, et al.Transepithelial Transport of YWDHNNPQIR and its Metabolic Fate, with Cytoprotection against Oxidative Stress, in Human Intestinal Caco-2 Cells[J]. J Agric Food Chem, 2017, 65(10):2056-2065.
[28]
Regazzo D , Mollé D , Gabai G , et al.The(193-209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer[J]. Mol Nutr Food Res, 2010, 54(10):1428-1435.
[29]
Hellier MD, Holdsworth CD, Mccoll I, et al.Dipeptide absorption in man[J]. Gut, 1972, 13(12):965-969.
[30]
Adibi S A. Intestinal phase of protein assimilation in man[J]. Am J Clin Nutr, 1976, 29(2):205-215.
[31]
Silk DB, Perrett D, Webb JP, et al.Absorption of two tripeptides by the human small intestine: a study using a perfusion technique[J]. Clin Sci Mol Med, 1974, 46(3):393-402.
[32]
Hellier MD, Perrett D, Holdsworth CD.Dipeptide Absorption In Cystinuria[J]. Br Med J, 1970, 4(5738):782-783.
[33]
Hellier MD, Holdsworth CD, Perrett D, et al.Intestinal depeptide transport in normal and cystinuric subjects[J]. Clin Sci, 1972, 43(5):659-668.
[34]
Adibi SA, Morse EL.The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum[J]. J Clin Invest, 1977, 60(5):1008-1016.
[35]
Chung YC, Silk DB, Kim YS.Intestinal transport of a tetrapeptide, L-leucylglycylglycylglycine, in rat small intestine in vivo[J]. Clin Sci, 1979, 57(1):1-11.
[36]
Burston D, Taylor E, Matthews DM.Intestinal handling of two tetrapeptides by rodent small intestine in vitro[J]. Biochim Biophys Acta, 1979, 553(1):175-178.
[37]
Addison JM, Burston D, Payne JW, et al.Evidence for active transport of tripeptides by hamster jejunum in vitro[J]. Clin Sci Mol Med, 1975, 49(4):305-312.
[38]
Matthews DM, Payne JW.Transmembrane Transport of Small Peptides[J]. Current Topics in Membrane & Transport, 1980, 14(1):331-425.
[39]
Kerchner GA, Geary LE.Studies on the transport of enkephalin-like oligopeptides in rat intestinal mucosa[J]. J Pharmacol Exp Ther, 1983, 226(1):33-38.
[40]
Langguth P, Bohner V, Biber J, et al.Metabolism and transport of the pentapeptide metkephamid by brush-border membrane vesicles of rat intestine[J]. J Pharm Pharmacol, 1994, 46(1):34-40.
[41]
Fricker G, Bruns C, Munzer J, et al.Intestinal absorption of the octapeptide SMS 201-995 visualized by fluorescence derivatization[J]. Gastroenterology, 1991, 100(6):1544-1552.
[42]
Takaori K, Burton J, Donowitz M. The transport of an intact oligopeptide across adult mammalian jejunum[J]. Biochem Biophys Res Commun, 1986, 137(2):682-687.
[43]
Lundin S, Vilhardt H. Absorption of 1-deamino-8-D-arginine vasopressin from different regions of the gastrointestinal tract in rabbits[J]. Acta Endocrinol, 1986, 112(3):433-450.
[1] 刘嘉嘉, 王承华, 陈绪娇, 刘瑗玲, 王善钰, 屈海花, 张莉. 经阴道子宫-输卵管实时三维超声造影中患者疼痛发生情况及其影响因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 959-965.
[2] 高玲, 于哲, 范然, 臧银善. 外周血细胞计数比值评估类风湿关节炎疗效的价值[J]. 中华关节外科杂志(电子版), 2023, 17(05): 642-647.
[3] 王蓓蓓, 董启秀, 郗红燕, 于庆云, 张丽君, 式光. 早孕期孕妇药物流产失败的影响因素分析与构建相关预测模型及其对药物流产成功的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 588-594.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[6] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[7] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[8] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[9] 王帆, 马秋月, 刘小莉. 基于分位数回归模型的切口疝手术患者住院费用影响因素分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 522-529.
[10] 汪俊谷, 潘华琴, 杨雨田. HFNC治疗急性低氧性呼吸衰竭插管预后及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 523-525.
[11] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[12] 顾娇娇, 邹燕, 陈奕辰, 黄师菊, 张慧玲, 林楠. 基于简易营养评价精法评估肝癌患者出院后营养状况及其影响因素[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 534-539.
[13] 杨静, 顾红叶, 赵莹莹, 孙梦霞, 查园园, 王琪. 老年血液透析患者短期死亡的影响因素及列线图预测模型的预测作用[J]. 中华肾病研究电子杂志, 2023, 12(05): 254-259.
[14] 刘代江, 蒋俊艳, 万晓强, 马莎英. 结直肠癌肝转移患者生存状况及预后影响因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 284-288.
[15] 杜振双, 胡清福, 林颖艺, 张月霞, 陈美丽, 李祎祺, 王振华. 社区全科医师激励机制的影响因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 876-883.
阅读次数
全文


摘要