切换至 "中华医学电子期刊资源库"

中华胃肠内镜电子杂志 ›› 2019, Vol. 06 ›› Issue (01) : 32 -36. doi: 10.3877/cma.j.issn.2095-7157.2019.01.007

所属专题: 文献

综述

miRNAs在常见肝脏疾病中的研究进展
张帅1, 刘迎娣1,(), 孙国辉1, 王娟1, 何占娣1   
  1. 1. 100853 北京,解放军总医院第一医学中心消化内科
  • 收稿日期:2018-12-25 出版日期:2019-02-15
  • 通信作者: 刘迎娣

The research progress of microRNAs in common liver diseases

Shuai Zhang1, Yingdi Liu1,(), Guohui Sun1, Juan Wang1, Zhandi He1   

  1. 1. Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • Received:2018-12-25 Published:2019-02-15
  • Corresponding author: Yingdi Liu
  • About author:
    Corresponding Author: Liu Yingdi, Email:
引用本文:

张帅, 刘迎娣, 孙国辉, 王娟, 何占娣. miRNAs在常见肝脏疾病中的研究进展[J]. 中华胃肠内镜电子杂志, 2019, 06(01): 32-36.

Shuai Zhang, Yingdi Liu, Guohui Sun, Juan Wang, Zhandi He. The research progress of microRNAs in common liver diseases[J]. Chinese Journal of Gastrointestinal Endoscopy(Electronic Edition), 2019, 06(01): 32-36.

MicroRNAs(miRNAs)调控作为表观遗传学的重要组成部分,可调节人类基因组中约60%的蛋白质编码基因,参与调节着生物体的生长发育、细胞增殖和凋亡、脂肪代谢、病毒免疫等诸多方面。迄今为止,有大量研究探索了异常表达的miRNAs与多种肝脏疾病的高度相关性,本文就对近年来miRNAs在乙型病毒性肝炎、非酒精性脂肪性肝病、肝纤维化、肝硬化、肝癌中的作用机制及变化特点等相关研究进行综述。

As an important part of epigenetics, microRNAs can regulate about 60% of protein-coding genes in human genome, and participate in the regulation of growth and development, cell proliferation and apoptosis, fat metabolism, viral immunity and so on. So far, a large number of studies have explored the high correlation between abnormally expressed microRNAs and various liver diseases. This article reviews the recent studies on the mechanism and characteristics of microRNAs in viral hepatitis B, non-alcoholic fatty liver disease, liver fibrosis, cirrhosis and hepatocellular carcinoma.

[1]
Qian Z, Shen Q, Yang X, et al.The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment[J]. Biomed Res Int, 2015, 2015: 649161-649168.
[2]
Slaby O, Svoboda M, Michalek J, et al.MicroRNAs in colorectal cancer: translation of molecular biology into clinical application[J]. Mol Cancer, 2009, 8(1): 102-114.
[3]
Igaz I and Topa L. [Significance of microRNA expression in body fluids in the diagnosis of gastrointestinal tumors][J]. Orv Hetil, 2014, 155(1): 11-15.
[4]
Esteller M. Non-coding RNAs in human disease[J]. Nat Rev Genet, 2011, 12(12): 861-874.
[5]
Dandri M and Locarnini S. New insight in the pathobiology of hepatitis B virus infection[J]. Gut, 2012, 61(Suppl 1): i6-i17.
[6]
Loggi E, Gamal N, Bihl F, et al.Adaptive response in hepatitis B virus infection[J]. J Viral Hepat, 2014, 21(5): 305-313.
[7]
Wang G, Dong F, Xu Z, et al.MicroRNA profile in HBV-induced infection and hepatocellular carcinoma[J]. BMC Cancer, 2017, 17(1): 805-815.
[8]
Xu J, Wu C, Che X, et al.Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis[J]. Mol Carcinog, 2011, 50(2): 136-142.
[9]
Zhang H, Li QY, Guo ZZ, et al.Serum levels of microRNAs can specifically predict liver injury of chronic hepatitis B[J]. World J Gastroenterol, 2012, 18(37): 5188-5196.
[10]
Li JF, Dai XP, Zhang W, et al.Upregulation of microRNA-146a by hepatitis B virus X protein contributes to hepatitis development by downregulating complement factor H[J]. MBio, 2015, 6(2): e02459-02464.
[11]
Wang Y, Li Y. miR-146 promotes HBV replication and expression by targeting ZEB2[J]. Biomed Pharmacother, 2018, 99(3): 576-582.
[12]
Xing T, Zhu J, Xian J, et al.miRNA-548ah promotes the replication and expression of hepatitis B virus by targeting histone deacetylase 4[J]. Life Sci, 2019, 219(4): 199-208.
[13]
Nielsen KO, Jacobsen KS, Mirza AH, et al.Hepatitis B virus upregulates host microRNAs that target apoptosis-regulatory genes in an in vitro cell model[J]. Exp Cell Res, 2018, 371(1): 92-103.
[14]
Zhao F, Xu G, Zhou Y, et al.MicroRNA-26b inhibits hepatitis B virus transcription and replication by targeting the host factor CHORDC1 protein[J]. J Biol Chem, 2014, 289(50): 35029-35041.
[15]
Shih C, Chou SF, Yang CC, et al.Control and Eradication Strategies of Hepatitis B Virus[J]. Trends Microbiol, 2016, 24(9): 739-749.
[16]
Wang Y, Tian H. miR-101 suppresses HBV replication and expression by targeting FOXO1 in hepatoma carcinoma cell lines[J]. Biochem Biophys Res Commun, 2017, 487(1): 167-172.
[17]
Chalasani N, Younossi Z, Lavine JE, et al.The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases[J]. Hepatology, 2018, 67(1): 328-357.
[18]
Dowman JK, Tomlinson JW, Newsome PN.Systematic review: the diagnosis and staging of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther, 2011, 33(5): 525-540.
[19]
Zheng X, Gong L, Luo R, et al.Serum uric acid and non-alcoholic fatty liver disease in non-obesity Chinese adults[J]. Lipids Health Dis, 2017, 16(1): 202-208.
[20]
Michelotti GA, Machado MV, Diehl AM.NAFLD, NASH and liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(11): 656-665.
[21]
Katsura A, Morishita A, Iwama H, et al.MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis[J]. Int J Mol Med, 2015, 35(4): 877-884.
[22]
Afonso MB, Rodrigues PM, Simao AL, et al.Circulating microRNAs as Potential Biomarkers in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma[J]. J Clin Med, 2016, 5(3): 30-49.
[23]
Hu J, Xu Y, Hao J, et al.MiR-122 in hepatic function and liver diseases[J]. Protein Cell, 2012, 3(5): 364-371.
[24]
Liu CH, Ampuero J, Gil-Gomez A, et al.miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. J Hepatol, 2018, 69(6): 1335-1348.
[25]
Clarke JD, Sharapova T, Lake AD, et al.Circulating microRNA 122 in the methionine and choline-deficient mouse model of non-alcoholic steatohepatitis[J]. J Appl Toxicol, 2014, 34(6): 726-732.
[26]
Pirola CJ, Fernandez Gianotti T, Castano GO, et al.Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis[J]. Gut, 2015, 64(5): 800-812.
[27]
Wu GY, Rui C, Chen JQ, et al.MicroRNA-122 Inhibits Lipid Droplet Formation and Hepatic Triglyceride Accumulation via Yin Yang 1[J]. Cell Physiol Biochem, 2017, 44(4): 1651-1664.
[28]
Management of liver cirrhosis[J]. Lancet, 2014, 383(9930): 1694-1694.
[29]
Heidelbaugh JJ and Bruderly M. Cirrhosis and chronic liver failure: part I. Diagnosis and evaluation[J]. Am Fam Physician, 2006, 74(5): 756-762.
[30]
Ganem D and Prince AM.Hepatitis B virus infection-natural history and clinical consequences[J]. N Engl J Med, 2004, 350(11): 1118-1129.
[31]
Guo L, Li W, Hu L, et al.Diagnostic value of circulating microRNAs for liver cirrhosis: a meta-analysis[J]. Oncotarget, 2018, 9(4): 5397-5405.
[32]
Lopez-Riera M, Conde I, Quintas G, et al.Non-invasive prediction of NAFLD severity: a comprehensive, independent validation of previously postulated serum microRNA biomarkers[J]. Sci Rep, 2018, 8(1): 10606.
[33]
Riazalhosseini B, Mohamed R, Apalasamy YD, et al.Circulating microRNA as a marker for predicting liver disease progression in patients with chronic hepatitis B[J]. Rev Soc Bras Med Trop, 2017, 50(2): 161-166.
[34]
Shaheen NMH, Zayed N, Riad NM, et al.Role of circulating miR-182 and miR-150 as biomarkers for cirrhosis and hepatocellular carcinoma post HCV infection in Egyptian patients [J]. Virus Res, 2018, 255(16): 77-84.
[35]
Yan G, Li B, Xin X, et al.MicroRNA-34a Promotes Hepatic Stellate Cell Activation via Targeting ACSL1[J]. Med Sci Monit, 2015, 21(10): 3008-3015.
[36]
Fernandez-Ramos D, Fernandez-Tussy P, Lopitz-Otsoa F, et al. MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis[J]. Cell Death Dis, 2018, 9(10): 958-973.
[37]
Farrar C, Clarke S. Altered levels of S-adenosylmethionine and S-adenosylhomocysteine in the brains of L-isoaspartyl (D- Aspartyl) O-methyltransferase-deficient mice[J]. J Biol Chem, 2002, 277(31): 27856-27863.
[38]
Ma L, Ma J, Ou HL.MicroRNA219 overexpression serves a protective role during liver fibrosis by targeting tumor growth factor beta receptor 2[J]. Mol Med Rep, 2019, 19(3): 1543-1550.
[39]
Shen J, Huang CK, Yu H, et al.The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma[J]. J Cell Mol Med, 2017, 21(5): 986-992.
[40]
Miller KD, Siegel RL, Lin CC, et al.Cancer treatment and survivorship statistics, 2016[J]. CA Cancer J Clin, 2016, 66(4): 271-289.
[41]
El-Serag HB.Epidemiology of viral hepatitis and hepatocellular carcinoma[J]. Gastroenterology, 2012, 142(6): 1264-1273.e1.
[42]
Yang JD, Roberts LR.Hepatocellular carcinoma: A global view[J]. Nat Rev Gastroenterol Hepatol, 2010, 7(8): 448-458.
[43]
Abdalla MA, Haj-Ahmad Y. Promising Candidate Urinary MicroRNA Biomarkers for the Early Detection of Hepatocellular Carcinoma among High-Risk Hepatitis C Virus Egyptian Patients [J]. J Cancer, 2012, 3(1): 19-31.
[44]
Peng C, Ye Y, Wang Z, et al.Meta-analysis of circulating microRNAs for the diagnosis of hepatocellular carcinoma[J]. Dig Liver Dis, 2018, 卷(期): 起-止页.
[45]
Ye Y, Song Y, Zhuang J, et al.MicroRNA-302a-3p suppresses hepatocellular carcinoma progression by inhibiting proliferation and invasion[J]. Onco Targets Ther, 2018, 11: 8175-8184.
[46]
Bai S, Nasser MW, Wang B, et al.MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib[J]. J Biol Chem, 2009, 284(46): 32015-32027.
[47]
Xiong Y, Fang JH, Yun JP, et al.Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma[J]. Hepatology, 2010, 51(3): 836-845.
[48]
Zhang P, Yin J, Yuan L, et al.MicroRNA-139 suppresses hepatocellular carcinoma cell proliferation and migration by directly targeting Topoisomerase I[J]. Oncol Lett, 2019, 17(2): 1903-1913.
[49]
Ni JS, Zheng H, Huang ZP, et al.MicroRNA-197-3p acts as a prognostic marker and inhibits cell invasion in hepatocellular carcinoma[J]. Oncol Lett, 2019, 17(2): 2317-2327.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] . 肝移植治疗终末期肝病[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 1-.
[3] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[4] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[5] 汪沛, 倪蓓君, 元及, 宫为一, 范军. 卡瑞利珠单抗联合卡铂和培美曲塞治疗进展期肺腺癌的疗效及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 511-513.
[6] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[7] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[8] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[9] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[10] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[11] 侍新宇, 孙金兵, 何宋兵. 血液生物标志物在直肠癌新辅助治疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 228-233.
[12] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[13] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
阅读次数
全文


摘要