切换至 "中华医学电子期刊资源库"

中华胃肠内镜电子杂志 ›› 2025, Vol. 12 ›› Issue (04) : 273 -279. doi: 10.3877/cma.j.issn.2095-7157.2025.04.009

论著

三片段高效GFP重组蛋白分裂系统的构建及功能研究
周奕延1, 贾开民2, 张文君2, 郭明洲3,()   
  1. 1加州大学伯克利分校分子生物部门
    2加州大学伯克利分校化学生物分子工程部门
    3100853 北京,解放军总医院第一医学中心消化内科医学部
  • 收稿日期:2025-10-19 出版日期:2025-11-15
  • 通信作者: 郭明洲
  • 基金资助:
    美国国立卫生研究院细菌天然产物合成途径研究项目

Split-GFP-based three fragment recombination protein system designation and functional study

Yiyan Zhou1, Kaimin Jia2, Wenjun Zhang2, Mingzhou Guo3,()   

  1. 1Department of Molecular and Cell Biology, University of California, Berkeley
    2Department of Chemical and Biomolecular Engineering; University of California, Berkeley
    3Department of Gastroenterology, The First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
  • Received:2025-10-19 Published:2025-11-15
  • Corresponding author: Mingzhou Guo
引用本文:

周奕延, 贾开民, 张文君, 郭明洲. 三片段高效GFP重组蛋白分裂系统的构建及功能研究[J/OL]. 中华胃肠内镜电子杂志, 2025, 12(04): 273-279.

Yiyan Zhou, Kaimin Jia, Wenjun Zhang, Mingzhou Guo. Split-GFP-based three fragment recombination protein system designation and functional study[J/OL]. Chinese Journal of Gastrointestinal Endoscopy(Electronic Edition), 2025, 12(04): 273-279.

绿色荧光蛋白(GFP)可被切割为不同片段并在空间接近时发生重组,因此被广泛用于研究蛋白相互作用。然而,针对天然产物与靶蛋白相互作用检测的高效GFP分裂体系仍然缺乏。本研究旨在构建并优化一种可用于检测天然产物–靶蛋白相互作用的三片段GFP分裂系统。

方法

本研究设计了一种三片段GFP分裂系统。采用雷帕霉素与FKBP12之间的高亲和力结合模型作为体系验证工具,在酵母细胞内评估该三片段GFP系统的重组效率与荧光信号。进一步通过对雷帕霉素进行氯代烷烃化学修饰以实现HaloTag标记,并对系统背景信号与荧光强度进行优化分析。

结果

实验结果表明,雷帕霉素的氯代烷烃修饰可显著增强三片段GFP系统的荧光信号。然而,该体系在细胞内仍存在较高的背景荧光,导致有效信号较弱,限制了其在高通量筛选中的应用。为此,本研究通过引入可溶性标签蛋白提高GFP1-9主片段的溶解性和结构稳定性,从而增强其与其他GFP片段的重组效率。此外,将HaloTag标记系统替换为亲和力更强的链霉亲和素-生物素体系后。

结论

本研究成功构建并系统优化了一种基于三片段GFP的天然产物–靶蛋白相互作用检测体系。通过提高GFP主片段溶解性并引入高亲和力标记系统,有效增强了信号强度并降低了背景干扰,为该体系在高通量筛选和天然产物功能研究中的应用奠定了基础。

Objective

Green fluorescent protein (GFP) can be split into multiple fragments that reconstitute fluorescence upon spatial proximity, making it a powerful tool for probing biomolecular interactions.This study aimed to design and optimize a tripartite split-GFP system for monitoring natural product-target protein interactions in vivo.

Methods

The high-affinity interaction between rapamycin and FKBP12 was used as a model system to evaluate split-GFP reconstitution efficiency in yeast cells.A chloroalkane-modified rapamycin derivative was employed to enable HaloTag labeling, and fluorescence output was assessed.To improve system performance, solubility tags were introduced to enhance the stability of the GFP1-9 fragment, and the HaloTag labeling system was replaced with a streptavidin-biotin system with higher binding affinity.

Results

Chemical modification of rapamycin with a chloroalkane moiety significantly enhanced fluorescence intensity without compromising HaloTag labeling efficiency. Nevertheless, the tripartite split-GFP system exhibited substantial background fluorescence in vivo, resulting in weak effective signal and limiting its applicability in high-throughput screening. Improving the solubility and structural stability of the GFP1-9 core fragment increased reconstitution efficiency with the other GFP fragments. Furthermore, replacing the HaloTag system with the higher-affinity streptavidin-biotin labeling system led to a pronounced enhancement of fluorescence signal.

Conclusion

This study establishes and optimizes a tripartite split-GFP platform for detecting natural product-target protein interactions.By improving GFP fragment solubility and incorporating a high-affinity labeling system, signal intensity was significantly enhanced while background interference was reduced, supporting the potential application of this system in high-throughput screening and chemical biology research.GFP reconstitution has been well studied and applied widely as a report system.Since natural products are promising drug candidates, a robust split GFP report system can be valuable for drug development.

图1 三片段GFP分裂系统注:A:经烷基氯化物修饰的天然产物拟议结构,该修饰可通过Halo-Tag系统实现标记;B:三片段分裂GFP系统设计示意图。GFP10通过Halo-Tag与天然产物结合,GFP11则与靶蛋白融合。天然产物与靶蛋白的相互作用使GFP10和GFP11接近,从而与GFP1-9重构并产生绿色荧光信号,该信号可表示分子相互作用成功
图2 用于链霉亲和素–生物素系的分子合成和纯化注:A:用于合成生物素-雷帕霉素偶联物的酯化反应示意图。羧酸修饰的生物素与雷帕霉素上的羟基反应形成酯键;B:显示合成化合物纯化的HPLC色谱图。峰P3对应目标产物,其中生物素正确连接于预期位置。其他峰值为副产物,包括生物素连接位置错误或标记过量/不足的分子;C:链霉亲和素-GFP10融合蛋白变性纯化的SDS-PAGE分析。采用含6M尿素的裂解、洗涤及洗脱缓冲液进行纯化,证实成功分离出目标蛋白
图3 检测FKBP12-雷帕霉素相互作用的GFP分裂系统体外荧光信号注:测试了FKBP12-GFP11和GFP11-FKBP12两种构建体,以比较GFP11的N端和C端标签效果。阴性对照包括缺乏Halo标记的雷帕霉素的构建体,以及将FKBP12替换为MBP的构建体。阳性对照为直接GFP10-GFP11融合蛋白。荧光信号通过板式阅读器测定。FKBP12-雷帕霉素分裂GFP系统的信号在4 h后开始超过背景水平,并在24 h和48 h与阴性对照呈现明显分离,证实重组成功
图4 启动子强度对酵母内GFP分裂系统信号与背景比的影响注:FKBP12与GFP11融合蛋白分别在强启动子(质粒pKJ14)或弱启动子(质粒pKJ26)控制下表达。强启动子获得的最高信号背景比约为1.07,而弱启动子则产生更高比例,约1.26。GFP1-9与Halo标签GFP10均在标准强启动子(质粒pKJ17编码)下表达。阴性对照组仅含雷帕霉素而不含Halo标签系统。这些结果表明,在较弱启动子下表达FKBP12-GFP11可提高信号与背景的比值
图5 链霉亲和素-生物素基分裂GFP系统体外与体内评估注:A:链霉亲和素-生物素系分裂GFP系统与GFP10-GFP11融合蛋白阳性对照及两个缺乏Halo-雷帕霉素的阴性对照共同测试。荧光信号于23 h测定。链霉亲和素-生物素系统产生的荧光信号强度为Halo-Tag标签系统的2.36倍,且与阳性对照信号高度吻合;B:为确定最佳结合条件,采用GFP1-9(30 μM)、GFP10-链霉亲和素(5 μM)及FKBP12-GFP11(5 μM)进行生物素-雷帕霉素梯度滴定。于20 h测定荧光信号。经测定,生物素-雷帕霉素浓度达到5 μM时可获得最大信号输出;C:酵母体内链霉亲和素-生物素系统的测试显示,0 h与23 h时间点间荧光信号无显著变化,表明在该细胞条件下重组效率有限
图6 三片段GFP分裂系统的体内荧光信号比较注:A:质粒pKJ21-94表达额外GFP1-9基因后,观察到荧光信号相较于正常GFP1-9表达的质粒pKJ21有显著增强。此外我们展示了在不同OD条件下的pKJ21-94和pKJ21的比较(b)在融合MBP和GFP1-9后,GFP分裂系统的信号与背景比值通过与阴性对照组(20 μM雷帕霉素处理且无Halo标签)进行比较计算得出:25 h时,原始分裂GFP系统(pKJ17-26)比值为1.26,而MBP融合变体(pKJ17-109)比值为1.19,表明未显著改善
[1]
Atanasov AGZotchev SBDirsch VM,et al.Natural Products in Drug Discovery:Advances and Opportunities[J].Nat Rev Drug Discov202120(3):200-216.
[2]
Vane JR.Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-like Drugs[J].Nature New Biol1971231 (25):232- 235.
[3]
Vane JRBotting RM.The Mechanism of Action of Aspirin[J].Thromb Res2003110(5-6):255-258.
[4]
Jordan MAWilson L.Microtubules as a Target for Anticancer Drugs [J].Nat Rev Cancer2004, 4(4):253-265.
[5]
Tsien RY.The Green Fluorescent Protenin[J].Annu Rev Biochem, 199867(1):509-544.
[6]
Paulmurugan RGambhir SS.Monitoring Protein-Protein Interactions Using Split Synthetic Renilla Luciferase Protein-Fragment-Assisted Complementation[J].Anal Chem200375(7):1584-1589.
[7]
Lukyanov KA.Fluorescent proteins for a brighter science[J].Biochem Biophys Res Commun202210(633):29-32.
[8]
Park Ki SungCha HanvitNiu Jia,et al.DNA-controlled protein fluorescence: Design of aptamer-split peptide hetero-modulator for GFP to respond to intracellular ATP levels[J].Nucleic Acids Res202452(14):8063-8071.
[9]
Chen JZheng XFBrown EJ,et al.Identification of an 11-kDa FKBP12- Rapamycin-Binding Domain within the 289-kDa FKBP12- Rapamycin-Associated Protein and Characterization of a Critical Serine Residue[J].Proc Natl Acad Sci199592(11):4947-4951.
[10]
Brown EJAlbers MWBum Shin T,et al.A Mammalian Protein Targeted by G1-Arresting Rapamycin-Receptor Complex[J].Nature1994, 369(6483):756-758.
[11]
Cabantous SNguyen HBPedelacq JD,et al.A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association[J].Sci Rep, 20133(1):2854.
[12]
Kapust RBWaugh DS.Escherichia Coli Maltose-binding Protein Is Uncommonly Effective at Promoting the Solubility of Polypeptides to Which It Is Fused[J].Protein Sci19998(8):1668-1674.
[13]
Erdmann RSBaguley SWRichens JH,et al.Labeling Strategies Matter for Super-Resolution Microscopy:A Comparison between HaloTags and SNAP-Tags[J].Cell Chem Biol201926(4):584-592.e6.
[1] 李懿雪, 潘婷, 林焕彩, 周燕. 植物源性天然产物在口腔细菌感染性疾病中的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 188-196.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?