切换至 "中华医学电子期刊资源库"

中华胃肠内镜电子杂志 ›› 2022, Vol. 09 ›› Issue (03) : 148 -151. doi: 10.3877/cma.j.issn.2095-7157.2022.03.007

综述

炎症性肠病发病机制及与肠道菌群关系的研究进展
杨全龙1, 范崇熙2, 石学汇1, 徐梦楠2, 孙涛2, 宁守斌1,()   
  1. 1. 100142 北京,空军特色医学中心消化内科;075000 张家口,河北北方学院研究生院
    2. 100142 北京,空军特色医学中心消化内科
  • 收稿日期:2022-07-28 出版日期:2022-08-15
  • 通信作者: 宁守斌
  • 基金资助:
    国家自然科学基金青年项目(81702731); 海淀区卫生健康发展科研培育计划(HP2021-19-80801); 2021年空军军医大学临床研究项目(2021LC2201); 空军特色医学中心博士助推项目(21ZT16)

Advances in the pathogenesis and relationship between intestinal flora and inflammatory bowel disease

Quanlong Yang1, Chongxi Fan2, Xuehui Shi1, Mengnan Xu2, Tao Sun2, Shoubin Ning1,()   

  1. 1. Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China; Graduate School of Hebei North University, Zhangjiakou 075000, China
    2. Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China
  • Received:2022-07-28 Published:2022-08-15
  • Corresponding author: Shoubin Ning
引用本文:

杨全龙, 范崇熙, 石学汇, 徐梦楠, 孙涛, 宁守斌. 炎症性肠病发病机制及与肠道菌群关系的研究进展[J]. 中华胃肠内镜电子杂志, 2022, 09(03): 148-151.

Quanlong Yang, Chongxi Fan, Xuehui Shi, Mengnan Xu, Tao Sun, Shoubin Ning. Advances in the pathogenesis and relationship between intestinal flora and inflammatory bowel disease[J]. Chinese Journal of Gastrointestinal Endoscopy(Electronic Edition), 2022, 09(03): 148-151.

炎症性肠病(IBD)是一种慢性反复发作的炎症性肠道疾病,其具体病因尚不明确。IBD主要特征是异常免疫反应所致的肠道炎症,遗传易感基因和环境因素(例如饮食、吸烟、抗生素的应用)是其发病的主要诱因。大量研究已经揭示了肠道菌群在维持肠道稳态中的重要作用,肠道菌群失调不仅影响宿主代谢,也会导致存在遗传易感基因的宿主出现肠道免疫失调,从而诱发肠道炎症。本文对炎症性肠病的发病机制及其与肠道菌群之间的关系进行综述。

Inflammatory bowel disease (IBD) is a type of chronic and recurrent inflammatory bowel disease, the exact etiology of which is unknown. IBD is mainly characterized by intestinal inflammation caused by abnormal immune response. Genetic susceptibility genes and environmental factors such as diet, smoking, and antibiotic use are the main causes of its pathogenesis. A large number of studies have revealed the important role of gut microbiota in maintaining intestinal homeostasis. Intestinal microbiota dysbiosis not only affects host metabolism, but also leads to intestinal immune dysregulation in hosts with genetically susceptible genes, thereby inducing intestinal inflammation. This article reviewed the pathogenesis of inflammatory bowel disease and its relationship with the gut microbiota.

[1]
卞冬生.炎症性肠病中的营养不良与少肌症[J].肠外与肠内营养2018, 25(1): 56-61.
[2]
李学锋,彭霞,周明欢.我国炎症性肠病流行病学研究进展[J].现代消化及介入诊疗2020, 25(9): 1265-1267.
[3]
Jostins L, Ripke S, Weersma RK,et al.Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J]. Nature, 2012, 491(7422): 119-124.
[4]
Ananthakrishnan AN, Luo C, Yajnik V,et al.Gut Microbiome Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases[J].Cell Host Microbe201721(5): 603-610.
[5]
Sokol H, Brot L, Stefanescu C,et al.Prominence of ileal mucosa-associated microbiota to predict postoperative endoscopic recurrence in Crohn′s disease[J].Gut202069(3): 462-472.
[6]
Tan G, Zeng B, Zhi FC.Regulation of human enteric alpha-defensins by NOD2 in the Paneth cell lineage[J].Eur J Cell Biol201594(1): 60-66.
[7]
Yilmaz B, Juillerat P, Oyas O,et al.Publisher Correction:Microbial network disturbances in relapsing refractory Crohn′s disease[J].Natur Med201925(4): 701-701.
[8]
Hampe J, Franke A, Rosenstiel P,et al.A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1[J]. Natur Gene, 2007, 39(2): 207-211.
[9]
Drummond RA, Franco LM, Lionakis MS.Human CARD9:A Critical Molecule of Fungal Immune Surveillance[J].Front Immunol20189: 1836-1842.
[10]
Jhingran A, Kasahara S, Shepardson KM,et al.Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection[J].PloS Pathog, 2015, 11(1): e1004589.
[11]
Yang E, Shen J.The roles and functions of Paneth cells in Crohn′s disease: A critical review[J].Cell Prolif202154(1): e12958.
[12]
Liu Z, Lee J, Krummey S,et al.The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease[J].Natur Immunol201112(11):1063-1070.
[13]
Adolph TE, Tomczak MF, Niederreiter L,et al.Paneth cells as a site of origin for intestinal inflammation[J].Nature2013503(7475):272-276.
[14]
Valatas V, Kolios G, Bamias G.TL1A (TNFSF15) and DR3 (TNFRSF25): A Co-stimulatory System of Cytokines With Diverse Functions in Gut Mucosal Immunity[J].Front Immunol201910: 583-596.
[15]
Yamamoto H, Nakamura Y, Sato K,et al.Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans[J].Infect Immun2014, 82(4): 1606-1615.
[16]
Sokol H, Conway KL, Zhang M,et al.Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice[J].Gastroenterology2013145(3): 591-601,e593.
[17]
刘志昌,余稳稳,周海存,等.与炎症性肠病相关的环境因素的研究进展[J].中华炎性肠病杂志20215(4): 360-363.
[18]
Peloquin JM, Goel G, Villablanca EJ,et al.Mechanisms of Pediatric Inflammatory Bowel Disease[J].Ann Rev Immunol201634(1): 31-64.
[19]
Morton H, Pedley KC, Stewart RJC,et al.Inflammatory Bowel Disease:Are Symptoms and Diet Linked?[J].Nutrients202012(10):2957-2970.
[20]
杨佳,于君.饮食、肠道微生态与结直肠癌[J/CD].中华结直肠疾病电子杂志2019, 8(6): 541-545.
[21]
Chen L, Wang J, Yi J,et al.Increased mucin-degrading bacteria by high protein diet leads to thinner mucus layer and aggravates experimental colitis[J].J Gastroenterol Hepatol202136(10):2864-2874.
[22]
曾胜澜,张荣臻,王娜,等.饮食-肠道菌群轴对非酒精性脂肪性肝病的影响[J].临床肝胆病杂志2021, 37(11): 2676-2679.
[23]
杨礼丹,何訸,安振梅.肠道菌群在代谢相关脂肪性肝病中的作用[J].临床肝胆病杂志2021, 37(9): 2231-2235.
[24]
Laffin M, Fedorak R, Zalasky A,et al.A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice[J].Sci Rep2019, 9(1): 12294-12304.
[25]
Johansson ME, Phillipson M, Petersson J,et al.The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria[J]. Proc Natl Acad Sci USA2008105(39): 15064-15069.
[26]
Shan M, Gentile M, Yeiser JR,et al.Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals[J].Science, 2013, 342(6157): 447-453.
[27]
徐鹏飞,周千惠,廖雨晗,等.易感基因-潘氏细胞-肠道微生态轴在炎症性肠病中的作用[J].中华炎性肠病杂志2022, 6(1): 83-86.
[28]
Ye Y, Yosuke S, Noam J,et al.1097-Tl1A Overexpression Drives Paneth Cell Hyperplasia and Prevents Maturation of Lysozyme Containing Granules in the Presence of Intact Microbiota[J]. Gastroenterology2018, 154(6): S216.
[29]
Rivas MA, Beaudoin M, Gardet A,et al.Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease[J].Natur Gene201143(11): 1066-1073.
[30]
Dong Y, Fan C, Hu W,et al.Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling[J].J Pineal Res201660(3): 253-262.
[31]
Mazmanian SK, Liu CH, Tzianabos AO,et al.An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J].Cell2005122(1):107-118.
[32]
董雯迪,张海蓉,李瑞,等.调节性T淋巴细胞/辅助性T淋巴细胞17在自身免疫性肝炎发生发展中的作用机制及其相关治疗靶点[J]. 临床肝胆病杂志2021, 37(10): 2456-2460.
[33]
Alroqi FJ, Chatila TA.T Regulatory Cell Biology in Health and Disease[J].Curr Allergy Asthma Rep, 201616(4): 27-34.
[34]
Fantini MC, Rizzo A, Fina D,et al.Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression[J]. Gastroenterology2009136(4): 1308-1316.
[35]
Franke A, Balschun T, Karlsen TH,et al.Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility[J].Natur Genet200840(11):1319-1323.
[36]
Hoshi N, Schenten D, Nish SA,et al.MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice[J]. Natur Commun20123:1120-1129.
[37]
Roy U, Galvez EJC, Iljazovic A,et al.Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells[J].Cell Rep201721(4): 994-1008.
[1] 林华婵, 林赛娟, 陈民学. 腹横筋膜阻滞对老年斜疝患者麻醉效果及肠黏膜屏障功能的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 454-457.
[2] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[3] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[4] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[5] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[6] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[7] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[8] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[9] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[10] 余佳丽, 江学良. 从炎症性肠病治疗策略转变看生物制剂应用进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 129-134.
[11] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[12] 韩家超, 王飞飞, 柳子宁, 胡冀陶, 孟泽松, 雒月云, 王贵英. 二甲双胍的作用机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(03): 349-355.
[13] 杜青瑶, 曹颖雯, 林健雄, 郝润, 王静敏, 徐锐权, 寇晓霞. 肠道菌群促进诺如病毒感染的机制[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 241-244,255.
[14] 刘艳, 唐神结. 肠道菌群与抗结核药及其所致肝损伤的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 82-86.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要