[1] |
卞冬生.炎症性肠病中的营养不良与少肌症[J].肠外与肠内营养,2018, 25(1): 56-61.
|
[2] |
李学锋,彭霞,周明欢.我国炎症性肠病流行病学研究进展[J].现代消化及介入诊疗,2020, 25(9): 1265-1267.
|
[3] |
Jostins L, Ripke S, Weersma RK,et al.Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J]. Nature, 2012, 491(7422): 119-124.
|
[4] |
Ananthakrishnan AN, Luo C, Yajnik V,et al.Gut Microbiome Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases[J].Cell Host Microbe,2017,21(5): 603-610.
|
[5] |
Sokol H, Brot L, Stefanescu C,et al.Prominence of ileal mucosa-associated microbiota to predict postoperative endoscopic recurrence in Crohn′s disease[J].Gut,2020,69(3): 462-472.
|
[6] |
Tan G, Zeng B, Zhi FC.Regulation of human enteric alpha-defensins by NOD2 in the Paneth cell lineage[J].Eur J Cell Biol,2015,94(1): 60-66.
|
[7] |
Yilmaz B, Juillerat P, Oyas O,et al.Publisher Correction:Microbial network disturbances in relapsing refractory Crohn′s disease[J].Natur Med,2019,25(4): 701-701.
|
[8] |
Hampe J, Franke A, Rosenstiel P,et al.A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1[J]. Natur Gene, 2007, 39(2): 207-211.
|
[9] |
Drummond RA, Franco LM, Lionakis MS.Human CARD9:A Critical Molecule of Fungal Immune Surveillance[J].Front Immunol,2018,9: 1836-1842.
|
[10] |
Jhingran A, Kasahara S, Shepardson KM,et al.Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection[J].PloS Pathog, 2015, 11(1): e1004589.
|
[11] |
Yang E, Shen J.The roles and functions of Paneth cells in Crohn′s disease: A critical review[J].Cell Prolif,2021,54(1): e12958.
|
[12] |
Liu Z, Lee J, Krummey S,et al.The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease[J].Natur Immunol,2011,12(11):1063-1070.
|
[13] |
Adolph TE, Tomczak MF, Niederreiter L,et al.Paneth cells as a site of origin for intestinal inflammation[J].Nature,2013,503(7475):272-276.
|
[14] |
Valatas V, Kolios G, Bamias G.TL1A (TNFSF15) and DR3 (TNFRSF25): A Co-stimulatory System of Cytokines With Diverse Functions in Gut Mucosal Immunity[J].Front Immunol,2019,10: 583-596.
|
[15] |
Yamamoto H, Nakamura Y, Sato K,et al.Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans[J].Infect Immun,2014, 82(4): 1606-1615.
|
[16] |
Sokol H, Conway KL, Zhang M,et al.Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice[J].Gastroenterology,2013,145(3): 591-601,e593.
|
[17] |
刘志昌,余稳稳,周海存,等.与炎症性肠病相关的环境因素的研究进展[J].中华炎性肠病杂志,2021,5(4): 360-363.
|
[18] |
Peloquin JM, Goel G, Villablanca EJ,et al.Mechanisms of Pediatric Inflammatory Bowel Disease[J].Ann Rev Immunol,2016,34(1): 31-64.
|
[19] |
Morton H, Pedley KC, Stewart RJC,et al.Inflammatory Bowel Disease:Are Symptoms and Diet Linked?[J].Nutrients,2020,12(10):2957-2970.
|
[20] |
杨佳,于君.饮食、肠道微生态与结直肠癌[J/CD].中华结直肠疾病电子杂志,2019, 8(6): 541-545.
|
[21] |
Chen L, Wang J, Yi J,et al.Increased mucin-degrading bacteria by high protein diet leads to thinner mucus layer and aggravates experimental colitis[J].J Gastroenterol Hepatol,2021,36(10):2864-2874.
|
[22] |
曾胜澜,张荣臻,王娜,等.饮食-肠道菌群轴对非酒精性脂肪性肝病的影响[J].临床肝胆病杂志,2021, 37(11): 2676-2679.
|
[23] |
杨礼丹,何訸,安振梅.肠道菌群在代谢相关脂肪性肝病中的作用[J].临床肝胆病杂志,2021, 37(9): 2231-2235.
|
[24] |
Laffin M, Fedorak R, Zalasky A,et al.A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice[J].Sci Rep,2019, 9(1): 12294-12304.
|
[25] |
Johansson ME, Phillipson M, Petersson J,et al.The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria[J]. Proc Natl Acad Sci USA,2008,105(39): 15064-15069.
|
[26] |
Shan M, Gentile M, Yeiser JR,et al.Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals[J].Science, 2013, 342(6157): 447-453.
|
[27] |
徐鹏飞,周千惠,廖雨晗,等.易感基因-潘氏细胞-肠道微生态轴在炎症性肠病中的作用[J].中华炎性肠病杂志,2022, 6(1): 83-86.
|
[28] |
Ye Y, Yosuke S, Noam J,et al.1097-Tl1A Overexpression Drives Paneth Cell Hyperplasia and Prevents Maturation of Lysozyme Containing Granules in the Presence of Intact Microbiota[J]. Gastroenterology,2018, 154(6): S216.
|
[29] |
Rivas MA, Beaudoin M, Gardet A,et al.Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease[J].Natur Gene,2011,43(11): 1066-1073.
|
[30] |
Dong Y, Fan C, Hu W,et al.Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling[J].J Pineal Res,2016,60(3): 253-262.
|
[31] |
Mazmanian SK, Liu CH, Tzianabos AO,et al.An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J].Cell,2005,122(1):107-118.
|
[32] |
董雯迪,张海蓉,李瑞,等.调节性T淋巴细胞/辅助性T淋巴细胞17在自身免疫性肝炎发生发展中的作用机制及其相关治疗靶点[J]. 临床肝胆病杂志,2021, 37(10): 2456-2460.
|
[33] |
Alroqi FJ, Chatila TA.T Regulatory Cell Biology in Health and Disease[J].Curr Allergy Asthma Rep, 2016,16(4): 27-34.
|
[34] |
Fantini MC, Rizzo A, Fina D,et al.Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression[J]. Gastroenterology,2009,136(4): 1308-1316.
|
[35] |
Franke A, Balschun T, Karlsen TH,et al.Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility[J].Natur Genet,2008,40(11):1319-1323.
|
[36] |
Hoshi N, Schenten D, Nish SA,et al.MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice[J]. Natur Commun,2012,3:1120-1129.
|
[37] |
Roy U, Galvez EJC, Iljazovic A,et al.Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells[J].Cell Rep,2017,21(4): 994-1008.
|