切换至 "中华医学电子期刊资源库"

中华胃肠内镜电子杂志 ›› 2024, Vol. 11 ›› Issue (02) : 100 -104. doi: 10.3877/cma.j.issn.2095-7157.2024.02.006

论著

肠道准备不充分风险列线图的开发与验证
宋振河1, 张沛康2, 高孝忠1,()   
  1. 1. 264200 威海,山东大学附属威海市立医院消化内科
    2. 261000 潍坊,潍坊医学院临床医学院
  • 收稿日期:2023-12-07 出版日期:2024-05-15
  • 通信作者: 高孝忠
  • 基金资助:
    山东省重点研发计划项目(2019GSF108190)

Development and validation of a risk nomogram for inadequate bowel preparation

Zhenhe Song1, Peikang Zhang2, Xiaozhong Gao1,()   

  1. 1. Department of Gastroenterology, Weihai Municipal Hospital Affiliated to Shandong University, Weihai 264200, China
    2. School of Clinical Medicine, Weifang Medical University, Weifang 261000, China
  • Received:2023-12-07 Published:2024-05-15
  • Corresponding author: Xiaozhong Gao
引用本文:

宋振河, 张沛康, 高孝忠. 肠道准备不充分风险列线图的开发与验证[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(02): 100-104.

Zhenhe Song, Peikang Zhang, Xiaozhong Gao. Development and validation of a risk nomogram for inadequate bowel preparation[J/OL]. Chinese Journal of Gastrointestinal Endoscopy(Electronic Edition), 2024, 11(02): 100-104.

目的

建立列线图以识别有肠道准备不充分风险的患者,使这些患者可能从强化的肠道清洁方案中受益。

方法

回顾性收集2023年7月至2023年9月山东大学附属威海市立医院消化内镜中心373例接受分剂量肠道准备方案的患者的人口统计学资料和临床特征,将资料进行整理为一个队列,分为肠道准备充分组和肠道准备不充分组,对两组的临床资料进行比较。随机抽取80%的队列作为训练队列建立列线图预测模型,20%的队列作为验证队列对预测模型的区分度和精准度进行验证和评估。

结果

训练队列共纳入298例结肠镜检查,纳入预测模型的独立危险因素为糖尿病(P=0.0251)、便秘(P=0.0013)、肠道准备不充分历史(P=0.0431)、结直肠术后(P<0.0001)、未饮食管理(P=0.0254)、ASA≥Ⅲ级(P=0.0129)。本研究得出的列线图的判别能力较好,训练队列的曲线下面积为0.7455,验证队列的曲线下面积为0.7709。列线图预测模型C-index为0.746。校正曲线趋近于理想曲线。

结论

该列线图具有较好的预测能力,可用于将准备接受结肠镜检测患者肠道准备不充分的风险可视化、易于使用。

Objective

To develop a nomogram to identify patients at risk for inadequate bowel preparation so that these patients may benefit from an intensive bowel cleansing regimen.

Methods

The demographic data and clinical characteristics of 373 patients who received fractional dose intestinal preparation regimen at the Center of Digestive Endoscopy, Weihai Municipal Hospital Affiliated to Shandong University from July 2023 to September 2023 were retrospectively collected. And organize the data into a queue.We first divided the cohort into an adequate bowel preparation group and an inadequate bowel preparation group and compared the clinical data of the two groups. Then we randomly selected 80% of the queues as training queues to build the nomogram prediction model, and 20% of the queues as verification queues to verify and evaluate the differentiation and accuracy of the prediction model.

Results

A total of 298 cases of colonoscopy were included in the development cohort. Independent risk factors included in the prediction model were diabetes (P=0.0251), constipation (P=0.0013), history of intestinal underpreparation (P=0.0431), postoperative colorectal surgery (P<0.0001), no diet management (P=0.0254), and ASA grade≥Ⅲ(P=0.0129).The nomogram obtained in this study has good discriminative ability, and the area under the curve of the development cohort is 0.7455, and the area under the curve of the verification cohort is 0.7709.The C-index of the nomogram prediction model is 0.746.The correction curve approaches the ideal curve.

Conclusion

The nomogram has good predictive power and can visualize the risk of inadequate bowel preparation in patients preparing for colonoscopy and is easy to use.

表1 肠道准备充分组和肠道准备不充分组受检者临床资料比较[例(%),(Q1Q3)]
表2 训练队列的多因素分析结果
图1 患者肠道准备不充分风险的列线图预测模型
图2 训练队列受试者工作特征曲线
图3 验证队列受试者工作特征曲线
图4 列线图模型的校正曲线
[1]
Hsu CMLin WPSu MY,et al.Factors that influence cecal intubation rate during colonoscopy in deeply sedated patients[J].J Gastroenterol Hepatol201227(1): 76-80.
[2]
Simren MPalsson OSWhitehead WE.Update on Rome IV Criteria for Colorectal Disorders:Implications for Clinical Practice[J].Curr Gastroenterol Rep201719(4):15.
[3]
Li HZhang PXue Y.A comparison of the safety and efficacy of polyethylene glycol 4000 and lactulose for the treatment of constipation in pregnant women:a randomized controlled clinical study[J].Ann Palliat Med20209(6):3785-3792.
[4]
吴宇,李勇,肖金滔,等.基于列线图可视化评估结肠镜肠道准备充分度的研究[J].中华消化内镜杂志202339(4): 281-287.
[5]
Guo XYang ZZhao L,et al.Enhanced instructions improve the quality of bowel preparation for colonoscopy: a meta-analysis of randomized controlled trials[J].Gastrointest Endosc201785(1): 90-97,e6.
[6]
Chen GZhao YXie F,et al.Educating Outpatients for Bowel Preparation Before Colonoscopy Using Conventional Methods vs Virtual Reality Videos Plus Conventional Methods:A Randomized Clinical Trial[J].JAMA Netw Open2021, 4(11):e2135576.
[7]
Aksan FTanriverdi LHFigueredo CJ,et al.The impact of smartphone applications on bowel preparation,compliance with appointments,cost-effectiveness,and patients′ quality of life for the colonoscopy process:A scoping review[J].Saudi J Gastroenterol, 202329(2):71-87.
[8]
Liu ZZhang MMLi YY,et al.Enhanced education for bowel preparation before colonoscopy:A state-of-the-art review[J].J Dig Dis201718(2):84-91.
[9]
吴振兴,林颖.复方聚乙二醇电解质联合利那洛肽在功能性便秘患者肠镜检查前肠道准备中的应用效果[J].中国医药导报2023, 20(19): 108-111.
[10]
Zhang XChen YChen Y,et al.Polyethylene glycol combined with lactulose has better efficacy than polyethylene glycol alone in bowel preparation before colonoscopy:A meta-analysis[J].Clinics (Sao Paulo)202378:100172.
[11]
喻永琪,罗玉铃,陈涛,等.莫沙必利联合复方聚乙二醇电解质散在结肠镜检查前肠道准备有效性与安全性的系统评价[J].中国医院药学杂志202242(21): 2274-2281.
[12]
Zhang YDing CLi J,et al.Impact of Prepackaged Low-Residue Diet on Bowel Preparation for Colonoscopy:A Meta-analysis[J]. Gastroenterol Nurs202144(2): E29-E37.
[1] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[2] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[5] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[6] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[7] 袁延丽, 屈卓军, 崔会慧, 王菁, 高贝贝, 潘院. 原发性肺癌切除术后谵妄的危险因素及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 701-706.
[8] 王石林, 叶继章, 丘向艳, 陈桂青, 邹晓敏. 慢性阻塞性肺疾病真菌感染风险早期预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 773-776.
[9] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[10] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[11] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[12] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?