切换至 "中华医学电子期刊资源库"

中华胃肠内镜电子杂志 ›› 2025, Vol. 12 ›› Issue (02) : 114 -121. doi: 10.3877/cma.j.issn.2095-7157.2025.02.009

论著

肠道菌群可能通过影响炎症因子诱发慢性胰腺炎的研究
孙媛1, 江振宇2,(), 周怡2,(), 王驰2, 陈洪锁2   
  1. 1. 014040 包头,内蒙古科技大学包头医学院
    2. 014030 包头,内蒙古科技大学包头医学院第二附属医院
  • 收稿日期:2025-03-06 出版日期:2025-05-15
  • 通信作者: 江振宇, 周怡
  • 基金资助:
    内蒙古自治区创新引导项目(CXYD2022BT01)内蒙古医学科学院公立医院科研联合基金项目(2023GLLH0222)内蒙古自治区高等学校科学研究项目(NJZY22054)

To explore the relationship between chronic pancreatitis and intestinal microbiota

Yuan Sun1, Zhenyu Jiang2,(), Yi Zhou2,(), Chi Wang2, Hongsuo Chen2   

  1. 1. Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
    2. The Second Affiliated Hospital of Baotou Medical College,Inner Mongolia University of Science and Technology, Baotou City,014030, China
  • Received:2025-03-06 Published:2025-05-15
  • Corresponding author: Zhenyu Jiang, Yi Zhou
引用本文:

孙媛, 江振宇, 周怡, 王驰, 陈洪锁. 肠道菌群可能通过影响炎症因子诱发慢性胰腺炎的研究[J/OL]. 中华胃肠内镜电子杂志, 2025, 12(02): 114-121.

Yuan Sun, Zhenyu Jiang, Yi Zhou, Chi Wang, Hongsuo Chen. To explore the relationship between chronic pancreatitis and intestinal microbiota[J/OL]. Chinese Journal of Gastrointestinal Endoscopy(Electronic Edition), 2025, 12(02): 114-121.

目的

探索慢性胰腺炎(CP)的发病机制,检测验证慢性胰腺炎、肠道菌群以及免疫炎症因子之间的关系,为CP 的病因研究提供更丰富的数据支持。

方法

第一部分:招募2023 年1 月至2024 年12 月包头医学院第二附属医院就诊患者,按标准纳入实验组(CP 患者)与对照组(健康体检者),收集患者粪便行16S rRNA 测序,血清用ELISA 检测IL -6、IL-8、IL-1β、肿瘤坏死因子-α(TNF-α) 和核因子-κB p65(NF-κB p65)等炎症因子,对比分析CP 患者与正常人肠道菌群及炎症因子差异。 第二部分:应用二丁基二氯化锡(DBTC)建造CP 大鼠模型,分为实验组(CP 模型)和对照组(空白对照),并将DBTC 分为1.6 mg·kg -1高浓度、0.8 mg·kg -1 低浓度,分别注射,留取粪便和血液标本进行检测。

结果

CP 患者与健康对照组存在明显的菌群差异,表现为有益菌减少,致病菌增加。CP 组血清IL -6 (P <0.05)、IL-8(P <0.01)、IL-1β(P <0.001)、NF-κB p65(P <0.01)高于对照组,对照组TNF-α(P <0.001)高于CP 组。 同时CP 大鼠模型实验粪便检测结果与人类相近,血液中NF-κB p65、IL-1β、IL-8、TNF-α 含量显著高于对照组(P <0.0001),IL-6(P <0.01)也高于对照组。

结论

研究表明慢性胰腺炎和肠道菌群紊乱以及免疫因子升高有关,并进一步提出肠道菌群通过IL-1β/NF-κB p65 信号通路调控CP 的假设,同时明确了高剂量DBTC 建造的CP 大鼠模型更具稳定性,为后续研究提供依据。

Objective

To investigate the pathogenesis of chronic pancreatitis (CP), validate the relationship between CP, gut microbiota,and immune-inflammatory factors,and provide more comprehensive data support for the study of CP etiology.

Methods

Part 1:Patients admitted to the Second Affiliated Hospital of Baotou Medical College from January 2023 to December 2024 were recruited and divided into an experimental group (CP patients) and a control group (healthy individuals) based on predefined criteria.Fecal samples were collected for 16S rRNA sequencing, and serum levels of inflammatory factors, including IL-6,IL-8,IL-1β, tumor necrosis factor-α (TNF-α),and nuclear factor-κB p65 (NF-κB p65), were measured using ELISA. Differences in gut microbiota and inflammatory factors between CP patients and healthy controls were analyzed. Part 2: A dibutyltin dichloride (DBTC)-induced CP rat model was established, with rats divided into an experimental group (CP model) and a control group (blank control).DBTC was administered at high (1.6 mg·kg -1) and low (0.8 mg·kg -1) concentrations, respectively.Fecal and blood samples were collected for testing.

Results

Significant differences in gut microbiota were observed between CP patients and healthy controls, characterized by a decrease in beneficial bacteria and an increase in pathogenic bacteria.Serum levels of IL-6 (P <0.05), IL-8 (P <0.01),IL-1β (P <0.001),and NF-κB p65 (P <0.01) were higher in the CP group than in the control group,whereas TNF-α (P <0.001) was higher in the control group. Similarly,fecal test results in the CP rat model were consistent with human findings, and blood levels of NF-κB p65,IL-1β,IL-8,and TNF-α were significantly higher in the experimental group than in the control group (P <0.0001),with IL-6 (P <0.01) also elevated.

Conclusion

The study demonstrates that chronic pancreatitis is associated with gut microbiota dysbiosis and elevated immune-inflammatory factors. Furthermore,it proposes the hypothesis that gut microbiota regulates CP through the IL-1β/NF-κB p65 signaling pathway. Additionally,the high-dose DBTC-induced CP rat model was found to be more stable,providing a basis for future research.

图1 SD 大鼠建模流程图
图2 NF-κB p6、L-6、IL-8、TNF-α 和IL-1β 在实验组与对照组中的表达量 注:横坐标为分组,纵坐标为NF-κB p65、IL-6、IL-8、IL-1β、TNF-α 等炎症因子表达浓度,红、蓝圆点分别代表每个样本; *:P <0.05,**:P <0.01,***:P <0.001;A:NF-κB p65 表达量;B:IL-6、IL-8、IL-1B、TNF-α 表达量
图3 人类粪便菌群变化对比 注:Ex 为实验组,Con 为对照组。 A:Rank Abundance 曲线;图中横坐标展示了按照丰度降序排列的ASV/OTU 编号;纵坐标则呈现了各ASV/OTU 在特定样本中丰度(平均值)的log2 对数;B:Alpha 多样性指数的分组箱线图;在每个panel 中横轴表示分组标签,纵轴代表alpha 多样性指数值;C:PCoA 分析的样本二维排序图;横纵坐标轴括号内的百分比,代表该坐标轴所能够解释的样本差异数据(距离矩阵)的比例;D:ASV/OUT 的韦恩图;E:韦恩图不同区域的ASV/OTU 数目统计图;横坐标为对应于韦恩图不同区域的ASV/OTU 集合,纵坐标为属于不同门(左图)和属(右图)的ASV/OTU 数目的百分比例;F:韦恩图不同区域的ASV/OTU 丰度图;横坐标为对应于韦恩图不同区域的ASV/OTU 集合,纵坐标为属于不同门(左图)和属(右图)的序列丰度的百分比例
图4 人类粪便菌群变化对比 注:A:实验组与对照组给药后体重变化曲线,横坐标为时间,纵坐标为体重, *:P <0.05;B:实验组给药前后体重增长率对比;横坐标为分组,纵坐标为体重增长率, ****:P <0.000 1;C:实验组与对照组大鼠胰腺组织
图5 实验组与对照组HE 染色 注:A、B、D、E、F 为20 ×;C 为10 ×;F 是C 局部放大图
图6 NF-κB p65、IL-6、IL-8、TNF-α 和IL-1β 在疾病组和对照组中的表达 注:横坐标为分组,纵坐标为NF-κB p65、IL-6、IL-8、IL-1β、TNFα 等炎症因子浓度,红、蓝圆点分别代表每个样本; **:P <0.01,****:P <0.0001;A:NF-κB p65 表达量;B:IL-6、IL-8、IL-1B、TNF-α 表达量
图7 大鼠肠道菌群变化图 注:A:ASV/OTU 的韦恩图;E 为实验组,C 为对照组。 每个区块的数字指示该区块所包含的ASV/OTU 的数;B:韦恩图不同区域的ASV/OTU 数目统计图; 横坐标为对应于韦恩图不同区域的ASV/OTU 集合,纵坐标为属于不同门(左图)和属(右图)的ASV/OTU数目的百分比例;C:韦恩图不同区域的ASV/OTU 丰度图;横坐标为对应于韦恩图不同区域的ASV/OTU 集合,纵坐标为属于不同门(左图)和属(右图)的序列丰度的百分比例;D:人类粪便菌群丰度分布图;Con:对照组,Ex:实验组;E:大鼠粪便菌群丰度分布图;C:对照组,E:实验组。 D、E 横坐标为样本,纵坐标为相对丰度
[1]
Beyer G,Habtezion A,Werner J,et al. Chronic pancreatitis[J].Lancet,2020,396(10249):499-512.
[2]
Vege SS,Chari ST. Chronic Pancreatitis[J]. N Engl J Med,2022,386(9):869-878.
[3]
Thierens N,Verdonk RC,Löhr JM,et al. Chronic pancreatitis[J].Lancet,2025,404(10471):2605-2618.
[4]
Gandhi S,de la Fuente J,Murad MH,et al. Chronic Pancreatitis Is a Risk Factor for Pancreatic Cancer, and Incidence Increases With Duration of Disease:A Systematic Review and Meta-analysis[J].Clin Transl Gastroenterol,2022,13(3):e00463.
[5]
Singh VK,Yadav D,Garg PK. Diagnosis and Management of Chronic Pancreatitis: A Review[J]. JAMA,2019,322(24):2422-2434.
[6]
Liu L,Zhang T,Sui Y,et al. Gut microbiota affects pancreatic fibrotic progression through immune modulation in chronic pancreatitis[J].Microb Pathog,2023,177:106035.
[7]
Wu N,Xu XF,Xin JQ,et al.The effects of nuclear factor-kappa B in pancreatic stellate cells on inflammation and fibrosis of chronic pancreatitis[J].J Cell Mol Med,2021,25(4):2213-2227.
[8]
Jiao Y,Wu L,Huntington ND,et al. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases[J].Front Immunol,2020,11:282.
[9]
Hong J,Fu Y,Chen X,et al. Gut microbiome changes associated with chronic pancreatitis and pancreatic cancer: a systematic review and meta-analysis[J]. Int J Surg,2024,110(9):5781-5794.
[10]
Pan LL,Li BB,Pan XH,et al. Gut microbiota in pancreatic diseases: possible new therapeutic strategies[J].Acta Pharmacol Sin,2021,42(7):1027-1039.
[11]
Tao J,Cheema H,Kesh K, et al. Chronic pancreatitis in a caerulein-induced mouse model is associated with an altered gut microbiome[J]. Pancreatology,2022,22(1):30-42.
[12]
Efremova I,Maslennikov R,Poluektova E,et al. Epidemiology of small intestinal bacterial overgrowth[J]. World J Gastroenterol,2023,29(22):3400-3421.
[13]
Yang X,Xu H,Liang X,et al. Exploring the casual association between gut microbiome,circulating inflammatory cytokines and chronic pancreatitis: A Mendelian randomization analysis[J].Medicine (Baltimore). 2024,103(18):e37959.
[14]
Gardner TB, Adler DG, Forsmark CE, et al. ACG Clinical Guideline: Chronic Pancreatitis[J]. Am J Gastroenterol,2020,115(3):322-339.
[15]
Frost F,Weiss FU,Sendler M,et al. The Gut Microbiome in Patients With Chronic Pancreatitis Is Characterized by Significant Dysbiosis and Overgrowth by Opportunistic Pathogens[J]. Clin Transl Gastroenterol,2020,11(9):e00232.
[16]
Brubaker L, Luu S, Hoffman K, et al. Microbiome changes associated with acute and chronic pancreatitis: A systematic review[J].Pancreatology,2021,21(1):1-14.
[17]
van Loo G,Bertrand MJM.Death by TNF:a road to inflammation[J]. Nat Rev Immunol,2023,23(5):289-303.
[18]
Lütt F, Ehlers L,Nizze H, et al. Different characteristics of chronic dibutyltin dichloride-induced pancreatitis and cholangitis in mouse and rat[J]. Hepatobiliary Pancreat Dis Int,2020,19(2):169-174.
[19]
Zhang D,Li W,Wang M,et al. Methods of a New Chronic Pancreatitis and Spontaneous Pancreatic Cancer Mouse Model Using Retrograde Pancreatic Duct Injection of Dibutyltin Dichloride[J].Front Oncol,2022,12:947133.
[1] 张天麒, 宾晓芸. 阿托伐他汀对高脂饮食诱导的新西兰兔代谢功能障碍相关脂肪性肝病中巨噬细胞极化的作用及机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 167-178.
[2] 兰永, 刘晶, 杨志琦, 吴浪, 沙小春, 李明皓. 肠道菌群在胰腺炎发生发展中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 481-486.
[3] 余昌佳, 张怡婷, 张高乐, 李晨光. 慢性便秘肠道菌群与植物源性多糖的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 166-173.
[4] 刘昀坤, 孟彩祥, 王乐, 徐越, 叶晨, 李龙, 李宁, 陈启仪. 肠道菌群与慢传输型便秘机制相关研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 161-165.
[5] 邓玮, 周筛兰, 杨波, 林志亮. 肠道菌群移植治疗便秘患者出院准备度现状及影响因素分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 148-154.
[6] 朱万涌, 王乐, 徐越, 王新军, 叶晨, 李宁, 陈启仪, 李龙. 肠道菌群失衡与功能性肠病:从机制探讨到肠菌移植疗法[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 142-147.
[7] 陈俊夫, 吴纪霞, 田宏亮, 马静. 肠道菌群移植对菌-肠-脑轴疾病的治疗研究进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 136-141.
[8] 刘诗彤, 王楠. 肠源性尿毒症毒素在慢性肾脏病患者认知功能障碍发生机制中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 164-170.
[9] 尚伟锋, 陈德昌. 基于肠道菌群探讨脓毒症相关脑病治疗的新靶点[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 31-35.
[10] 谷肖明, 沈敏, 王瑀, 边燕. 肝癌术后感染患者肠道菌群特征与机体炎症、免疫功能及肠道功能的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 224-228.
[11] 尹艳娟, 张宇, 张颖, 李晓珊, 郭全伟. 慢性咳嗽为表现的胃食管反流病患儿的胃超声造影及肠道菌群特征分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 240-244.
[12] 王帆, 刘雨, 蔡亦李, 张菂, 王丹, 胡良皞, 李兆申. 吸烟对特发性慢性胰腺炎患者临床特征的影响[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 101-106.
[13] 王玉琳, 王中华, 刘子文, 吕梦鑫, 于源滋, 李涛, 胡锦华, 张小茜. 肝硬化消化道出血患者经颈静脉肝内门体分流术前后肠道微生态的宏基因组学分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 135-143.
[14] 盛鹏, 柏立哲, 张靖, 李丹, 曹宏. 低聚半乳糖增强去卵巢小鼠肠道屏障功能预防骨质流失[J/OL]. 中华临床医师杂志(电子版), 2025, 19(01): 48-57.
[15] 吕豪, 钱福凯, 徐瑞. 肠道菌群及其代谢产物与高血压的关系研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 126-132.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?